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and (A.4a) and (A.6a) by 

Y~q _+ aM Y,p--________~_(IEhl2)--ah (A.8b) 
ZN a ~ - I  ~N 1--ah 

The average (] Ehl 2) are made over subsets of reflexions 
with fixed a. 

Equations (A.8) may be interpreted by observing 
that, while 

pp(r) d r =  j" pp(r) dr, 
v v 

it holds that 
^2 par) dr<- ~ p~(r) dr. 

v v 

The excess of scattering power of pp with respect to 
pp is completely transferred to the set of superstruc- 

E r2 ture reflexions. Thus the averages (I hi )s-b and 
t2  (IEhl)supor will lead, through (A.4) and (A.6), to 

O~ M --1 

and to 

1 

rather than to the identification of Y~IY, N, Ep-~I~'~,N, 
~q/Y~ N. Thus, even if the various subsets of reflexions 

may be renormalized by using the corresponding 
experimental values of <lFhl2>, the information (so 
useful for estimating triplet reliability) on ~ ,  ~p_~ 
and ~q is not accessible. 
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Abstract 

The mathematical model proposed in paper III of 
this series [Cascarano, Giacovazzo & Lui6 (1988). 
Acta Cryst. A44, 176-183] for describing structures 
with superstructure effects has been used to derive 
probabilistic formulas for estimating triplet 
invariants. The formulas obtained proved sufficiently 
robust to be applied successfully to a wide range of 
structures with superstructure effects, in which devi- 

0108-7673/88/020183-06503.00 

ations both of replacive and of displacive type from 
ideal pseudotranslational symmetry occur. 

Symbols and abbreviations 

Symbols and abbreviations are as in paper III 
(Cascarano, Giacovazzo & Lui6, 1988) of this series. 
Reference will also be made to papers I (Cascarano, 
Giacovazzo & Lui6, 1985) and II (Cascarano, 
Giacovazzo & Lui6, 1987). 

© 1988 International Union of Crystallography 
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1. Introduction 

In paper I I I a  general mathematical model was pro- 
posed which is able to describe a large variety of 
pseudotranslational symmetries. According to this 
model, the electron density distribution p(r) was 
divided into two components, pp(r) and pq(r), the 
first of which approximately satisfies pseudotransla- 
tional symmetry. Statistical analysis of diffraction 
data gives in favourable cases approximate informa- 
tion on the scattering power of the average structure 
~p(r), so that it seems more useful to study triplet 
invariants in terms of the electron distribution 

p(r) = pp(r) + pp_#(r)+ pq(r) (1) 

where p#(r) = t3p(r) and pp_~(r) = pp(r) -  t3p(r). 
It will be seen that probabilistic estimation of triplet 

invariants benefits from the Fourier transform of the 
pseudotranslational symmetry just as other methods 
(Main, 1976; Beurskens, Prick, Doesburg & Gould, 
1979; Giacovazzo, 1983; Camalli, Giacovazzo & 
Spagna, 1985) take advantage of the Fourier trans- 
form of a molecular fragment when its orientation or 
position is known a priori. Though the Fourier trans- 
form of the pseudotranslational symmetry does not 
give information on single triplets but only on classes 
of triplets, its use as prior information in probabilistic 
approaches will prove quite useful. 

An algebraic analysis of the information contained 
in the various classes of triplets is undertaken in § 2. 
Use is made there of the Cochran (1955) relationship 
relating triplets to the integral value of p3(r) [for a 
related analysis see Gramlich (1984)]. In § 3 the main 
probabilistic formulae for triplet invariants are given. 
Experimental data are given in § 4. 

2. Algebraic considerations 

From (1) 

F , =  (F,)p + (Fh) p_p + (F,.)q. (2) 

If h corresponds to a substructure reflexion then (see 
the appendix of paper III) 

Fh = ( Fh) e + ( Fh)q; (3) 

if h corresponds to a superstructure reflexion then 

F.= (&)~_~+(&)q. (4) 
A triplet of type 'sub-sub-sub'  may be written 

FhFkFFv-~= [(F,)e + (F,)q ] [(Fk) ~ + (Fk)q] 

x [ (Fh--~) # + (F~--~) q ] 

= (FOe( Fk)e(F~7-~) # + (Fh)q( Fk)q(Fog-k) q 

+ . . .  + mixed terms. 

The average value of FhFkFFV-k may be obtained 
by observing that mixed terms are all expected to be 
dispersed around zero: this is due to the basic assump- 

tion that &, (and therefore p# and pp_#) is uncorre- 
lated with pq, so that 

pp(r)pq(r) dr=O. 
V 

Then 

(GFk F ~ )  = ((Fh) #(Fk) #(Fh-~) #) 

+ ((G)q (Fk)q(F~7~)q). (5) 

The mean values on the right-hand side of (5) are 
both expected to be positive in accordance with 
Cochran's (1955) relationship 

(FhFk Fhw-k) = L j p3(r) dr, 
V 

where L is a suitable constant. Accordingly 

(FhFkFh--~)=L~ j p3(r) dr+Lq j p3(r) dr. (6) 
V v 

No negative term occurs on the right-hand side of 
(6): it may be concluded that the presence of eventual 
non-ideal pseudotranslational symmetry does not 
affect the positivity of triplet relationships of type 
'sub-sub-sub'• 

Let us now look at a 'super-super-super'  triplet: 
according to (4) and because of the same consider- 
ations invoked for 'sub-sub-sub'  triplets we now 
obtain 

(F"Fk F ~ ) =  Lq[ ~ P:-~(r) dr+ ! p3q(r) dr] (7) 

While the second integral on the right-hand side of 
(7) is always positive, the first one may vanish (ideal 
pseudotranslation), or may be positive or negative 
according to circumstances. 

If deviation from ideality is due only to small shifts 
of atoms from exact positions then ~ v p~_~(r) dr may 
• 3 m general be neglected with respect to ~v pq(r) dr [in 
which case pp_~(r) is mostly constituted of pairs of 
nearly equivalent alternately positive and negative 
peaks: see Fig. 2 of paper III]" in this case 'super- 
super-super' triplets are always expected to have 

3 _#(r) dr is negative and larger positive cosines. IfJ v pp 
than j 'vp~(r)dr (see Fig. 1 of paper III), then the 
expected value of a 'super-super-super" triplet is 
negative. Thus, in the absence of any prior informa- 
tion on the nature of pp_~, the use of 'super-super- 
super" triplets in direct procedures for solving crystal 
structures is sometimes contra-indicated. 

For a "super-super-sub' triplet one obtains 

(FhFkF~v-k) = ((Fh) p-~( Fk)p_#(FFv~)#) 

+ ( ( Fh)q( Fk)q( F~v~)q) 
= L,, ~ p~,_~(r)p~(r) dr+ I P3(r) dr. (8) 

V V 

For structures with ideal pseudotranslational sym- 
metry the average positivity of the triplet is only 
secured by pq, while a supplementary non-vanishing 
term arises in structures with non-ideal 
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pseudotranslational symmetry. Both the integrals on 
the right-hand side are never negative: thus the posi- 
tivity of 'super-super-sub' triplets is not affected by 
non-ideal pseudotranslational symmetry. 

For a 'sub-sub-super'  triplet, the existence of 
which was first suggested in paper I, the mean value 

(FhFkFh~> = <( Fh)q( Fk)q(Fh+k) q) 

+ ((Fh) p(Fk) p(Fh-~) p-P) 
= Lq .[ p3(r) dr 

V 

+ L, ~ p~(r)pp_p(r) dr (9) 
V 

is obtained. Even if p# and p,_# overlap significantly, 
the integral 

pE(r)pp_p(r) dr 
V 

is always expected to vanish, owing to the relation 

pp_#(r) dr = 0. 
V 

Thus 
(FhFkFh-~>=Lq ~ pa(r) dr. (10) 

v 
In conclusion, triplets of type 'sub-sub-super'  are 
never expected to be negative. 

3. Probabilistic estimation of triplet invariants 

The method of joint probability distribution functions 
may be usefully applied to the electron density distri- 
bution (1) even if negative peaks occur in the com- 
ponent pp_p(r). The mathematical model described 
in paper III will be used. For the sake of brevity only 
the final formulas are given here: the reader may 
justify them via the algebraic conclusions of § 2. 

The conditional probability distribution of q0 = 
~0h--~k--~h--k given IEhl, IEkl, IEh-kl is a v o n  Mises 
distribution of type 

p(q0) = {27rlo[ G(h, k, h -  k)]} -~ 

x exp [ G(h, k, h - k) cos qb] (11) 
where 

2lEhEkEh-kl 
G ( h , k , h - k ) - [ N ( h , k , h _ k ) ] W 2 .  (12) 

The value of N(h, k, h - k) for a given triplet is defined 
in the following way. 

3 ( a ) 'Sub - sub- sub' triplets 

Equation (III.4) may be replaced [see (6)] by 

[S(h ,  k, h - k ) ]  -w2 

1 
- S(h, k, h - k )  

x{ (_~n2n2n  2 ) [23]p, [Y..3]q] 

where 

S(h, k, h - k )  = 

P A A A 

[~3]p = ~'. f j (h)f j (k)~(h-k) ,  
j=l 

N 
[~3]q = ~ f j(h)fj(k)~(h-k) 

j=p+l  

where/3 is the number of peaks in pp(r). 

3 (b) 'Super- super- super' triplets 

From (7), 

[N(h, k, h - k ) ]  -'/2 

1 f [~-'~3]p-p, [~-'~3 ] ql = 

S(h, k, h - k )  t ~ 2  

where 
p-p 

[~3]p_p= ~ 6f/h) 8fj(k) 6fj(h-k),  
j=l 

and summation goes over the (p -/3) peaks in pp_p(r). 

3 (c) 'Super- super- sub' triplets 

From (8), 

[N(h, k, h - k ) ]  -'/2 

_- 1 ~" [~3__~/~p,p ~_ [~3]q 1 
S ( h , k , h - k ) [  ~N E~ 2j  

where 

[Y~3],,_p,p = Y~ I A f ( h ) A f j ( k ) A £ ( h -  k)l. 
J 

The summation goes over those peaks in pp_p(r) 
whose squares at least partially overlap with peaks 
in pp(r) [see (8)]. Afj is the scattering factor of the 
electron peak in common between Ip~-p(r)l and pp(r). 

3 ( d ) 'Sub- sub- super' peaks 

From (10), 

[N(h, k, h - k ) ]  -'/2 - 

3(e) The general formula 

S(h, k, h - k )  [ X~ 2 J" 

The various results above may be described via the 
unique general expression: 

[N(h, k, h - k ) ]  -w2 

1 { ( ~  2 2 2 )[Ea]p 
- S(h, k , h - k )  nlnEn3.. .  

rz31  rz l,_, 
+-~N/2 + gl ~'----------T - +  g2 ~'-N J (13) 

where : (1) gi = 0, unless the triplet is of 'super-super-  
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super' type, in which case g~ = 1; (2) g2 = 0, unless 
the triplet is of 'super-super-sub' type, when g2 = 1. 

The use of (13) in direct procedures requires some 
supplementary observations: 

(1) According to the model proposed in papers I 
and II, a fixed value of N(h, k, h - k )  may be associ- 
ated with a given type of triplet. The present model 
partially destroys this correspondence since 
N(h, k, h -  k) is also a soft function of (sin 0)/A. 

(2) While [ ~ 3 ] N / ~  2 may be statistically esti- 
mated from the chemical formula, this is in general 
impossible for [E3]/~/E~ 2, [E3]p_/~/E~2,..., which 
therefore will be approximated in terms of the frac- 
tional scattering power. 

(3) The term [Y .3 ] f f~  2 will thus be replaced by 

where Y@/YN is estimated at (sin 0)/,~ = 0 via the 
t2 least-squares straight line representing <1 .1 >s. er as 

a function of (sin 0)/h [see § 3(c) of paper III]: 

[E3]/3E~ 2 __ (1-(] E ' 2 h  )super)lat  (sinO)/a =0 [ t r 2 ] ~ 2 .  [ ° ' 3 ]  N 

Correspondingly 

[E3]q E ,  2 [,~3]N 
E 3 N / 2 - - ( (  h ) s u p e r ) a t ( s i n 0 ) / A = 0  [O.213A2- 

(4) [E3]p_~,ffY~ 2 is always non-negative. Its value 
is expected to increase with (sin 0)/A if [see equation 
(A.6a) and § 3(c) of paper III] 

~,p- f f~ ,N -- aM -- 1 E '  2 
- - [ < 1  .I >super 

O~ M 

- (  E '  2\ I 
h /super at (sin0)/X=O] 

is an increasing function of (sin 0)/A. In the absence 
of supplementary information the following approxi- 
mation will be used: 

[E3]p_~.dE~2 ~ - 1  E, 2 - - -  [<1 )super 
~M 

t2 -<le.I )superlat<sin0)/a=0] [a'3]N [~2] 3/2 

and (IE' 2\ is calculated at the (sin 0)/A which is h /super 

maximum among those corresponding to h, k and 
h - k vectors. 

(5) [Y~3]p_FF~aN/2 may be positive, zero or negative 
according to circumstances. Its absolute value is 
expected to increase with (sin 0)/A if Y~p-FFY.N is an 
increasing function of (sin 0)/A, and may be approxi- 
mated by 

aM - 1 
SPP= + [( Ehi2)s,,per 

O~ M 

-(I )super at(sin#,/A=O]j [o.2-~ (14) 

Table 1. For the random structures S1, S 1 M  and $4 
the three types o f  triplets are ranked according to the 

reliability parameter  G 

n is the n u m b e r  o f  triplets lying be tween  G, and  G , . ~ ,  % is the 
pe rcen tage  o f  tr iplets with posi t ive  cosine.  

S I  S I  M $4  
' S u p e r - s u p e r - s u p e r '  ref lexions 

G n % n % n % 
2.0 42 100 364 93.4 
2.4 344 97.7 251 97.6 70 0.09 
3"0 559 99.6 142 98.6 356 0-12 
3.6 289 100 54 98-1 216 0.06 
4.2 130 100 21 100 91 0-04 
4.8 65 100 2 100 30 0.03 
5.5 22 100 I 100 16 0.05 
6"5 8 100 1 100 4 0-00 

' S u p e r - s u p e r - s u b '  ref lexions 

G n % n % n 4 % 
1"2 999 81.4 1283 88 100 
1.6 1342 87.2 1267 90.8 1185 99.7 
2.0 410 94.4 397 95"5 1393 99.9 
2.4 82 97.6 106 98.1 587 100 
3"0 10 100 30 100 273 100 
3-6 3 100 57 100 
4"2 3 100 9 100 
4"8 7 100 

' S u b - s u b - s u b '  ref lexions 

G n % n 1 % n % 
2.4 5 100 100 
3"0 242 100 38 97.4 24 100 
3.6 259 100 176 99.4 157 100 
4.2 136 100 211 100 168 100 
4.8 50 100 153 100 132 100 
5.5 15 100 103 100 86 100 
6.5 8 100 82 100 52 100 
9.0 1 100 30 100 21 100 

where the sign remains uncertain. The assumption 
[Y'.3]p_ff~3u/2 = 0 may be maximally non-committal in 
the absence of any supplementary information. 

In order to check the above conclusions under well 
established conditions the random structures S1 (per- 
fect pseudotranslational symmetry), S1 M (displacive 
deviations from ideal pseudotranslational symmetry) 
and $4 (replacive deviations) described in paper III 
have been used. In Table 1 triplets of type 'super- 
super-super', 'super-super-sub' and 'sub-sub-sub'  
are ranked in order of the reliability parameter G for 
each structure. It may be observed that 'sub-sub-sub'  
are always well estimable. 

Also 'super-super-sub' triplets are always expected 
to be positive, no matter whether displacive or 
replacive deviations from ideal pseudotranslational 
symmetry occur. By contrast, and in agreement with 
the theoretical conclusions in § 2, 'super-super- 
super' triplets are expected to be positive if ideal 
pseudotranslational symmetry or displacive devi- 
ations from it occur, while, in the case of replacive 
deviations, this kind of triplet is on the average nega- 
tive rather than positive [in accordance with the large 
negative value of ~vp3_~(r) dr for $4]. 
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Table 2. Freieslebenite: triplets of  type 'super-super- 
super' are ranked according to G 

n is the n u m b e r  o f  triplets with reliability p a r a m e t e r  larger  than  
the co r re spond ing  G, % is the percen tage  o f  posi t ive ones.  

G 
0-4 
0-6 
0-8 
1"0 
1"4 
2"0 
2.4 
2"8 

Old p rocedure  New p rocedure  
n % n % 

1148 49.7 1328 55-2 
1148 49-7 857 58.5 
1145 49-6 456 60.5 
1071 48.7 222 65.3 
705 45.2 36 83.3 
267 43.1 1 100 
104 46.2 1. 100 
29 48.3 

4. Practical applications 

The normalization procedure described in paper III 
and the probabilistic formulas described in § 3 of this 
paper have been implemented in the SIR program 
(Cascarano, Giacovazzo, Burla, Nunzi, Polidori, 
Camalli, Spagna & Viterbo, 1985). The procedure has 
been applied to the six test structures quoted in Table 
2 of paper III: some references to results obtained 
by application of the procedure described in papers 
I and II is also made. 

Freieslebenite 

Remarkable displacive deviations from ideal 
pseudotranslation u = ( a /2+b /3 )  occur in this inter- 
esting structure. Since u approximately relates Pb, Ag 
and Sb, replacive deviations are also relevant. There 
are non-negligible negative peaks in Pp-t% while 
~vp3_#(r) dr is a small positive number. Thus 'super- 
super-super' triplets are expected to be positive on 
the average, but rather dispersed around 2zr. This is 
confirmed in Table 2, where it is also shown that the 
new procedure ranks 'super-super-super'  triplets 
markedly better than the old one. Triplets of type 
'sub-sub-sub'  and 'super-super-sub'  are efficiently 
estimated both by the present and by the old pro- 
cedure. Even if both procedures routinely solve the 
structure, the new one provides more precise struc- 
tural parameters. 

Mesolite 

Both displacive and replacive deviations from 
ideality are associated with the vecor u = a / 3 .  
Replacive deviations are rather small: accordingly 
both the old and the new procedures easily solve the 
structure. 

Ferri 

Displacive deviations from u = ( a+b) /2  are negli- 
gible, as well as replacive deviations (u mostly relates 
Fe atoms). All types of triplets are reliable: the struc- 
ture is easily solved by both procedures. 

Table 3. Pocro: triplets of  type 'super-super-super' 
are ranked according to G 

n is the n u m b e r  o f  triplets with reliabili ty p a r a m e t e r  larger  than  
the co r re spond ing  G, % is the percen tage  o f  posi t ive ones. 

G n % 

0.6 504 34.5 
1.0 446 33.2 
1-4 282 28.7 
2.0 102 32.4 
2.4 49 30"6 
2-8 20 30.0 
3-2 9 11.1 

Fega 

Small displacive deviations from u = c / 3  occur. 
Since u approximately relates Ga-Ga-S  atoms, some 
few negative peaks can be found in Pp-!3 which can 
however be neglected when compared with larger and 
numerous positive peaks in/9# and pq. Thus 'super- 
super-super' triplets (377 triplets up to G-~ 8.5, all 
correct) and 'super-super-sub'  triplets (811 triplets 
up to G-~ 4.6, the most reliable 650 correct) play an 
important role: by contrast only 166 'sub-sub-sub'  
triplets (up to G-~8.5, all correct) are available, 
which therefore play a secondary role in the phasing 
process. Trials by M U L T A N 8 0  (Main, Fiske, Hull, 
Lessinger, Germain, Declercq & Woolfson, 1980) 
were unsuccessful. The structure was solved by the 
procedure described in papers I and II; the solution 
is also easily found by the present method. 

Cimetidine 

Pseudotranslational vector u = ( a + c ) / 2  ideally 
relates S atoms. According to Kojid-Prodi6, Ru~id- 
Torog, Bresciani-Pahor & Randaccio (1980), 
MULTAN78  (Main, Hull, Lessinger, Germain, 
Declercq & Woolfson, 1978) gave only chicken-wire 
E maps. The structure was solved by using, as known 
phases, 13 reflexions phased on the basis of the S- 
atom coordinates. 

The routine application of the present procedure 
easily provides solutions with all 18 non-hydrogen 
atoms of the molecule. 

Pocro 

In this remarkabl.e structure the pseudotransla- 
tional vector u =  (a /6+c /2 )  approximately relates 
three sequences of six atoms: Cr -Cr -Cr -Cr -Cr -Cr ,  
Se-Se-Se-Se-Se-Se and Se-Se-nul-Se-Se-nul ,  
where nul stands for 'absent atom'. Thus remarkable 
deviations from ideality both of displacive and of 
replacive type are present. Accordingly 'sub-sub-sub'  
and 'super-super-sub'  triplets are accurately esti- 
mated by our formulas, while 'super-super-super'  
triplets are mostly negative (see Table 3). In,spite of 
this unfavourable situation, seven of the eight sym- 
metry-independent atoms are in the first ten peaks of 
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the E map with the highest figure of merit. Unexpec- 
tedly, the largest maximum corresponds to the K 
atom, which is shifted from the correct position by 
about 0.3 A, and peaks 3, 8 and 9 are false. 

Even if all the test structures are routinely solved 
by our program, the above results suggest a further 
modification. According to paper III deviations of 
replacive type cannot be foreseen by means of the 
statistical analysis of diffraction data (but forecasts 
can sometimes be made on the basis of the cell con- 
tents). Thus the default choice SPP=0  for (14) may 
be adequate or ~adequate according to circum- 
stances. In order to allow the user to modify the 
default assumptions the term 

applied successfully to direct solution of a large 
variety of structures showing superstructure effects. 
Even if it is not always possible, from the statistical 
analysis of diffraction data, accurately to estimate the 
various parameters of real pseudotranslational sym- 
metries, the information content to be exploited is so 
large as to make very easy the solution of crystal 
structures which would otherwise be rather difficult 
by traditional methods. The implementation of the 
theory in SIR has been made in such a way that a 
solution may be obtained quite automatically without 
user intervention (the only directive strictly needed 
is PSEUDO, which starts the procedure). 

[E3]q 

in (13) has been replaced by 

[Y,3]q (1 + coeff, g,). 

In default conditions coeff.=0: then assumption 
SPP=0  is confirmed; coeff. = - 1  eliminates 'super- 
super-super' triplets from the phasing procedure, 
coeff. = +1 corresponds to the largest confidence in 
'super-super-super'  triplets. Which choice is best is 
unpredictable: for example, the program is not able 
to fix the origin for Freieslebenite if coeff. = -1 ,  while 
the same choice for Pocro leads to a very good E 
map (that with largest figure of merit) whose first 
seven peaks correspond to correct Se and Cr atomic 
positions, and whose peak number 11 provides K 
atomic positions. 

5. Concluding remarks 

The probabilistic theory described in this paper and 
in paper III seems to be sufficiently robust to be 
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Abstract 

The influence of thermal phonons on the dynamical 
diffraction OH near a third reciprocal-lattice point L, 
in an otherwise perfect crystal, is investigated 
theoretically. It is shown that in the first-order 
modified two-beam description [Juretschke (1984). 
Acta Cryst. A40, 379-389] all effects due to phonon 
transitions are governed by the usual Bessel functions, 
but only of arguments involving H. With this proviso, 
the first-order modified two-beam description of 
diffraction near L incorporates phonon coupling 
entirely in the standard manner of the strict two-beam 
case. Therefore typical phonon influences, such as 
the Debye-Waller factor or thermal diffuse scattering, 
can be discussed directly in the neighborhood of 
n-beam diffraction merely by using the modified par- 
ameters, i.e. structure factors, absorption coefficients 
etc. in a traditional two-beam formulation. Some 
additional implications of this result about the effect 
of other deviations from crystal perfection on the 
modified two-beam description are also pointed out. 

Introduction 

The first-order dynamical theory of the modified two- 
beam description of diffraction near a three-beam 
point, developed for perfect crystals (Juretschke, 
1982, 1984; Hcfier & Marthinsen, 1983; Chang, 1984), 
has satisfactorily reproduced a variety of experi- 
mental data involving three-beam and higher 
interactions (Juretschke, 1984, 1986a; Juretschke & 
Wagenfeld, 1986). Such agreement suggests that the 
degree of crystal perfection does not crucially affect 
the main predictions of the theory, but it remains to 
be shown explicitly why this is so. In this paper we 
study the influence on the modified two-beam 
description of deviations from periodicity induced by 
thermal atomic motions. This mainly requires rederiv- 
ing the basic equations of the modified two-beam 
approach in the presence of phonons, and then 
inspecting these equations for their predictions, 
specifically with respect to the dispersion surface, the 
Debye-Waller factor and thermal diffuse scattering. 

It was originally expected that at finite temperature 
each structure factor entering into the theory would 
carry its own Debye-Waller factor. However, as 
shown below, this is not the case. Even though the 
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modified two-beam formulation involves the structure 
factors of all coupled reciprocal-lattice points, tem- 
perature effects are governed entirely by the Debye- 
Waller factor of the primary interaction. 

These results, correct in the asymptotic regime, of 
course also bear on the more general three-beam case 
at finite temperatures, a configuration for which the 
effect of phonon coupling apparently has not been 
worked out explicitly. 

General formulation 

In a three-beam interaction we describe propagation 
by the three propagation vectors K0, KH, and KL. If 
the primary diffraction is chosen to be via H, and the 
additional coupling occurs via L, then the usual two- 
beam phase matching now requires two conditions: 

KH=K0+.H; K L = K 0 + L  (1) 

Maxwell's equations lead to six scalar equations for 
the field amplitudes, usually decomposed into the 
two principal polarizations o- and 7r with respect to 
the plane of incidence 

(E~, ~ . . . . .  EH, E o , E H ,  EL, E~). (2) 

These equations involve the structure factors F . ,  
FL and FL-H, and the deviations s~i of the propagation 
vectors from their average value within the crystal 

~=(K, .Ki ) ' /2 -k (1 -½_FFo) ,  i =0, H, L, (3) 

where k = w/  c, F = e2/(eomoj2vce,). 
The modified two-beam description applies when 

EL >> Go, ~, ,  i.e. when L is still far from the Ewald 
sphere. In that case ~, is a known parameter (propor- 
tional to the distance of L from the Ewald sphere) 
and the two fields E~, E~ can be expressed in terms 
of the other four fields of (2), and SOL. The remaining 
four equations can then be recast into standard two- 
beam form, at least to terms including 1/S~L 
(Juretschke, 1984). In the notation of that paper, these 
equations are 

o"  o -  2so0 Eo + kFF~r_E¢, = 0 
o -  o"  kFFHLEo + 2 ~ E ~  = 0 

(4) 
2~g E~ + kFF}c  E ~ = 0 

kFFTqL E'~ + 2,~Tq E Tq =0, 
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